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1. Abstract

This project is dedicated to investigate the difficult
audio-to-video generation with representation learning. Au-
dio to video generation is an interesting problem that
has abundant application across several industry fields.
Here, we propose a novel training flow consisting of pre-
trained models (StyleGAN3, Wav2Vec2, MTCNN net-
works), newly trained models (variational autoencoders and
transformers), and an adversarial learning algorithm. To the
best of the author’s knowledge, this is the first implementa-
tion of audio-to-video generation using a pre-trained Style-
GAN3. The input is a speech audio sequence and an image
of a face. Our model will learn to ”animate” the face by
predicting the facial expressions and lip movement. We find
that the latent code of our generative model can be encoded
16-fold into a 96-dim vector that retains the information of
the talking face. By using this method, audio-to-video gen-
eration can be realized without training any generative mod-
els, and only latent codes should be predicted from audio.
This minimizes our requirement for dataset size and train-
ing time. (The reconstructed videos can be found here.)

2. Introduction

Audio to video generation can be regarded as an exten-
sion of audio to image in the time domain [1]. In 2017,
Chung et al used encoder-decoder CNNs to develop a model
capable of generating talking faces. The method runs in
real time and is applicable to faces and audio not seen
at training time. They use a known image or video to
modify frames and generate the video sequence [2]. An-
other research proposed in CVPR 2020 used an algorithm
OneShotA2V, which leverages curriculum learning to learn
movements of expressive facial components. This paper
uses spatially adaptive normalization and a generative ad-
versarial network, which adapts to any given unseen selfie
by applying fewshot learning with only a few output update
epochs [3]. The most recent work on audio to video pro-
posed a novel discrete variational autoencoder with adver-
sarial loss, dVAE-Adv, which learns a new discrete latent

representation which they called Memcodes [4].
Most of the audio-to-video literature train generative ad-

versarial networks (GANs) for generating image sequences.
In particular, the GANs are used for generating facial im-
ages that have different expressions. They focus mainly
on lip movement the most, since it is most correlated with
speech. There are also other GANs that can synthesize talk-
ing faces. For instance, StyleGAN is a generator architec-
ture that can automatically learn unsupervised separation of
high-level attributes such as pose and identity, and also en-
ables scale-specific control of the synthesis [5]. The latent
codes in StyleGAN are disentangled so that it can be eas-
ier to interpolate different properties of human faces. In its
most recent update, the StyleGAN3 is specifically designed
to improve on its previous version StyleGAN2 to guarantee
equivariant translation and rotation at pixel scale details [6],
making it suitable for generation of video and animations.
Different high-level attributes are encoded in each layer of
the latent code, so one can target different layers for modi-
fying targeted high-level attributes.

From the other end, prediction of frame sequences from
audio can be treated as a Seq2seq learning problem. Lin
et al. applied seq2seq learning to solve a similar audio-
visual event localization problem [7]. Since one frame
results from not only its corresponding section in the au-
dio sequence but also its context, one needs to transform
the audio sequence into some contextual representation
that can be further used for predicting the output frames.
The Wav2Vec2 model learns powerful representations of
given an audio sequence by masking the input into a la-
tent space and minimizes a Connectionist Temporal Classi-
fication (CTC) loss defined over a quantization of the latent
representations which are jointly learned [8]. The output
of the Wav2Vec2 model contains abundant contextual rep-
resentation that can be further used for several downstream
tasks.

In this project, we make use of pre-trained StyleGAN3
and Wav2Vec2 models, and propose a novel training flow
that can predict animated talking face images from one im-
age and audio sequence (Fig. 1). First, we encode cropped
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Figure 1. Scheme for speech to video synthesis in this project.

image sequences into latent codes of StyleGAN3. Then we
further encode the residuals of certain layers of the latent
codes into another latent representation using a variational
autoencoder (VAE). The latent representations of the VAE
delineate some compact form of the talking face. Then, we
train a network to predict the latent representations from the
embedded audio sequence of the original video. The results
show clear relationship between the movement of lips of the
reconstructed frames and the audio sequence.

3. Talking Face Generation from Single Image
and Audio

The training flow for speech-driven facial synthesis is
shown in Fig. 1. In total, there are 4 pre-trained models
and 3 newly-trained models (Table 1). First, the audio and
image sequences of the video clips are separated. The im-
ages sequences are cropped and resized to 256×256 pixel
size that shows only the talking person’s face. The cropped
image sequences are encoded into latent codes (ws), which
can be used as the input for a pre-trained generative model.
The residual of the layers that control general facial expres-
sions of latent codes (∆ws) are further encoded into another
latent representation (µ) using a variational autoencoder
(VAE). This latent representation learned by the VAE is our
training target. On the other hand, the audio sequences are
embedded using Sequence to Sequence (Seq2Seq) model.
we use the embedded audio sequence (e) as our training in-
put to train a model that can predict the latent representation
(µ′) of the VAE, and try to minimize the loss between µ′ and
µ.

3.1. Face Detection and Frame Cropping

Most of the videos used for training in this project is de-
rived from raw videos, where only a portion of each frame
contains the face of the talking person. Here, we used
Multi-task Cascaded Convolutional Networks (MTCNN)
for detecting the talking face in each frame and cropping
[9]. Since the person or the camera might be moving, the
size and position of the cropped sections might change. In-
tuitively, we tried to crop the face in each frame and con-
catenate them to form the talking face frame sequences.
However, we find that this results in a serious jittering.
So we only applied face detection in each 10 frames, and
linearly interpolated the detection boundaries’ position be-
tween them. The result is a smooth enough cropped face se-
quence. The number of frame intervals for detection should
depend on the frame rate of each video sequence. MTCNN
cannot identify who is talking and who is not if there are
multiple faces in one frame. So, we discarded whole se-
quences in any detected frame, multiple faces are detected.
we also discarded whole sequences whenever no faces are
detected. The MTCNN is configured so that only faces
larger than 200×200 pixel in size count as a valid detection.

3.2. StyleGAN3 Latent Code Construction

The StyleGAN3 we used is pre-trained on the Flickr-
Faces-HQ Dataset (FFHQ) [5], previously used for training
its previous versions StyleGAN and StyleGAN2. Specifi-
cally, we use the stylegan3-r-ffhqu-256x256 model, which is
equivariant to rotation, and outputs a 256×256 image given
a 16×512 latent code (w).

We make the assumption that for each cropped frame in
the video sequence, there exists at least one corresponding
latent code (w∗) that has a reconstruction loss (L) less than a



Table 1. Models used in this project.

Model Usage Input Output
MTCNN (pre-trained) Face detection and cropping Raw image 256×256 image
StyleGAN3 (pre-trained) Face image generation w 256×256 image
VAE encoder Encode latent code residual to latent representation ∆w∗

5,6,7 µ∗

VAE decoder Decode latent representation to latent code residual µ ∆w5,6,7

Wav2Vec2 (pre-trained) Embed audio sequence Raw Audio e
Embed2Lat Predict latent representation from audio embedding e µ
pSp encoder (pre-trained) Encode face image to latent code 256×256 image w∗

certain threshold (Lthres). we used the encoding algorithm
described in [10] to find the latent code, which is an adver-
sarial method that uses a weighted sum of Mean Squared
Error (MSE) and Learned Perceptual Image Patch Similar-
ity (LPIPS) loss function to find w∗. we tried several differ-
ent weights between MSE and LPIPS loss, the final loss is
defined as:

L = LMSE + 10LLPIPS (1)

where the learning rate (lr) is set to 0.02, and decays to
0.01 half-way through training. For the first frame, a ran-
dom w∗ is initialized, and 1000 steps are taken. For every
subsequent frame, we assume that there will not be a lot of
difference compared to the previous frame, and a reasonable
w∗ can be found near the encoded w∗ of the previous frame.
Therefore, only 5 steps are taken for each subsequent frame,
with lr = 0.01.

3.3. VAE Latent Representation Encoder

The latent codes (w∗) have a dimension of 16 × 512.
Despite the abundant information being encoded, it will be-
come an under-defined problem if we tried to predict w∗

from the audio sequence. Hence, we used a variational au-
toencoder (VAE) for encoding the latent codes. We apply a
residual learning method, where w∗

i is the latent code of the
ith frame, and the target is

∆w∗
i = w∗

i − w∗
0 (i ∈ N) (2)

We chose to encode the 5th to 7th layer of the latent code
(∆w∗

i [5, 6, 7]) into another latent representation µ∗ that has
a dimension of 96. These three layers contain high-level
information regarding facial expressions, and most impor-
tantly, the shape of lips [6]. There are four linear layers
in the encoder and decoder of the VAE, where the input
dimensions for the encoder are 1536, 768, 384, and 192,
respectively. The structure of the decoder is the exact re-
verse of the encoder. Gaussian Error Linear Units (GELU)
are used as the activation function of each layer. We use
a batch size of 10000, learning rate of 0.001, and train the

network for 500 epochs. A combined reconstruction MSE
and KL divergence loss is used during training.

Since we are only encoding three layers, we expect the
pose of angle of the reconstructed face look similar to only
the first frame, and not the subsequent ones. There may be
movement and rotation of the face from the original cropped
sequence, but we assume it does not have a strong relation-
ship between the input audio sequence. Therefore, by using
only the 5th to 7th layer, we can actually reduce some noise
during training.

3.4. Audio Embedding using Wav2Vec2

Raw audio sequences are preprocessed to be in a 16-bit,
16kHz, mono channel format. Then they are fed into the
pre-trained Wav2Vec2 base model [8] to produce embedded
vectors (e) that have a shape of 50T × 768, where T is the
duration of the audio in seconds, and 768 is the output size
of the transformer of Wav2Vec2. According to [8], e con-
tains contextualized information at each time step, which
is a good starting form of representation of the whole se-
quence, and suitable for downstream training tasks.

3.5. Embed2Lat Prediction

We construct the Embed2Lat model to predict µ∗ from
e. Embed2Lat consists of a transformer that has the same
structure with the transformer in Wav2Vec2, an adaptive av-
erage 1D pooling layer, and a linear layer. The input shape
of Embed2Lat is 50T × 768, while in the pooling layer, the
first dimension is pooled to rfpsT , where rfps is the frame
rate of the image sequences. The second dimension is 96,
which corresponds to the output size of the linear layer and
the size of µ∗. The learning rate is set to 10−5, and a batch
size of 256 is used. We minimize the MSE loss between µ∗

and our predicted µ.

4. Experiments
The computational power requirement is heavy due to

the requirement for video processing, usage of large-scale
GANs, and seq2seq training on a large dataset. A NVIDIA
GeForce 3090X GPU is used along with AMD Ryzen 9
5950X 16-Core Processor running on ArchLinux operating



Figure 2. Reconstructed (left) and original (right) cropped image
using the encoding algorithm in [10].

system. Two 32GB DDR4 DRAMs running at 2666MHz
are used.

4.1. Dataset

The raw dataset used for training is AVSpeech - a large-
scale audio-visual dataset comprising speech video clips
with no interfering background noises [11]. The AVSpeech
dataset consists of roughly 4700 hours of videos segments,
each 3-10 seconds long, with audible sound belonging to
a singe speaking person (although more than one person
might appear in the clip). We used the testing dataset which
consists of 133,286 valid clips. All the clips are sepa-
rated into audio and image sequences. After extracting the
cropped sequences using the method in sec. refsec:mtcnn, a
total of 9,996 sequences are constructed, and the frame rate
is tuned to 25FPS.

4.2. StyleGAN3 Encoding

Fig. 2 shows the original and reconstructed cropped im-
age from the learned w∗ of each frame. Despite the sub-
tle differences between the images, the reconstructed im-
age sequence look mostly the same as the original image
sequence. However, this is only true for a clear enough
cropped face, and the background should mostly be in plain
color or should differ a lot from the color of the face. Also,
if the talking face is turning or moving around rapidly, the
loss will increase, and the reconstruction image would be
blurry.

One drawback using the encoding algorithm in sec. 3.2
is it takes approximately 2 minutes to encode one image
from a randomized w∗, and another 2 minutes to encode all
the subsequent frames. If only running on one CPU thread,
it will take around one month to encode all 9,996 sequences.
Thus we run the encoding algorithm on multiple threads,
and tried to maximize the efficiency of our GPU. We are
able to speed up the encoding rate to around 45 seconds
per clip, with the whole encoding duration lasting around 5
days.

During this process, we tried to encode the images using
a pre-trained encoder - ReStyle-pSp [12]. This encoder is
trained on the FFHQ dataset over the StyleGAN3 genera-
tor, and enables image inversion back to w∗. A whole se-

Figure 3. Reconstructed (left) and original (right) cropped image
using the VAE.

quence can be encoded just in a few seconds. However, the
reconstructed images generally differ a lot from the orig-
inal images (data not shown). This might be due to the
distributional difference between the AVSpeech and FFHQ,
and also the cropped images generally do not have a clean
enough background and high enough quality to be properly
encoded.

4.3. Code2Lat Training Results

After training the VAE for encoding ∆w∗
i [5, 6, 7] to µ∗,

we tested on our validation dataset, and visualized the re-
constructed sequence. The reconstructed ith frame (w′∗

i )
can be formalized as:

w′∗
i = w∗

0 +D(E(∆w∗
i [5, 6, 7]))σcode + µcode (3)

where D is the VAE decoder, E is the VAE encoder,
σcode and µcode are global constants calculated from the
standard deviation and mean of all ∆w∗. Fig. 3 shows
the reconstructed and original image sequence from w′∗ and
w∗. We see that the reconstructed image retains the facial
expressions including lip movement, but the movements are
weakened compared to the original image. Also, it does
not retain the rotation and translation of the face, which the
information is mostly included in the other layers of w∗.
Overall, the reserved lip movements should be a good qual-
itative indicator that the encoded µ∗ do contain the informa-
tion related to speech signal.

4.4. Embed2Lat Training Results

The MSE loss can reach a value of around 0.273 for the
validation set, and 0.269 for the training set. After training,
we constructed the whole complete flow from raw audio,
preprocessed audio, e, µ, ∆w[5, 6, 7], to reconstructed im-
age. Note that we should also input one image as the first
frame, and the learned residuals (∆w[5, 6, 7]) are added to
the 5th to 7th layer of that encoded first frame. Originally,
the reconstructed sequence does not move at all. Then, we
magnified the output of µ 500 times, and we can see observ-
able correlation between the audio and the reconstructed
image sequence.



Figure 4. Reconstructed (left) and original (right) image using the
complete flow.

Fig. 4 shows the reconstructed and original image of
four arbitrary frames from three sequences. Generally, as
the speech goes, the lip move accordingly. However, we do
not see a clear relationship between the pronunciation of a
syllable and the shape of the lips. They seem to be simply
opening and closing along with the sound. This means the
network cannot clearly differentiate between phonations.
Also, the head does not move in the reconstructed sequence.
This is reasonable and can be inferred from the result in sec.
4.3. Most often, the eye does not blink and stays the same
for the whole sequence. However, there are some circum-
stances where the eye blinks as the lips close. We find that
the background flickers a lot as the lips move. This may be
caused by the magnified noises. In a nutshell, the audio-to-
video prediction is generally in accordance with each other,
though subtle differences between the syllable pronuncia-
tions cannot be well displayed.

4.5. Video Generation from Different Image/Audio
Source

We can even generate talking face videos from different
image and audio sources. The results are mostly the same
as for using image and audio from the same video. The
face speaks in another language, accent, tone, and even for
different genders. There is also no decaying effect as time
goes on in the sequence. All of animated results above can
be found in the link here.

5. Conclusion

In conclusion, a speech-to-video model is proposed for
generating talking face sequences from raw audio and the
first frame. The cropping of raw image sequences, encod-
ing of images to latent code, encoding of latent code resid-
uals to latent representation, audio embedding, and embed-
ding to latent representation prediction are implemented us-

ing 5 different models. We find that by using StyleGAN3
as the face generator, it prevents the output from becom-
ing blurry given the noise of the prediction. To the best of
the author’s knowledge, this is the first implementation of
audio-to-video generation using StyleGAN3. We hope that
this study can shed some light on relationships between au-
dio and image encoded in the latent space of StyleGAN3
and also between the Wav2Vec2 embeddings and frame se-
quence, further taking a step towards natural audio-to-video
generation with representation learning.
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