Category: Miniaturization
Real-time Microfluidic Impedimetric Aptasensing System
Real-time Impedance Detection System γ
Miniaturized ELISA Platform
Studying in a cross-disciplinary department meant having the freedom to choose what to explore. I entered the intelligence bio-sensing lab (previously named bio-molecular device lab) hosted by professor Lin-Chi Chen when I was a junior. There I was trained how to put into practice the engineering skills that I have learned during college, and implementing them on biosensing. I became interested in manufacturing devices that can realize automation, assist research, or help reduce the cost for lab experiments (e.g. Real-time Impedance Detection Systems, Surface Plasmon Resonance Platform, Automated Microfluidic Controlling Platform). This miniaturized ELISA platform serves as the first one among those devices and systems I had created.
The enzyme-linked immunosorbent assay (ELISA) is a commonly used analytical biochemical assay that uses antibodies against the protein to be tested to detect the presence of ligands (usually proteins) in the liquid sample. However, the traditional method for performing this assay is costly and time-consuming. Therefore, I decided to construct a miniaturized ELISA platform that can help reduce sample usage, and thus make it cheaper.
Small circular holes are cut on a thin acrylic board are by laser cut, a holder for assisting supporting the microwell is fabricated using 3D printing, and PVDF films are used as the base material for protein immobilization (Fig. 1).
Figure 1. Materials used for the miniaturized ELISA platform
The acrylic board with holes and another board with no holes are used to clip the PVDF film tight, wrapped with tape, making microwells with a volume capacity of ~10μL (Fig. 2 left). The microwell is put on the 3D-printed holder, and the right picture of Fig. 2 shows the microwell platform with each well containing 10μL deionized water.
Figure 2. PVDF clipped with an acrylic board with holes and another board without holes (left), and the microwell platform with every well containing 10μL deionized water.
Streptavidin-HRP is diluted using PBS buffer, and 5μL of the solution is added in each of the microwell. Then 5μL TMB is added for validation of the colorimetric detection method. Fig. 3 shows the experiment result using the platform for qualitative analyzing different concentrations of streptavidin-HRP. It can be seen that different concentrations yield different intensities of absorbed light signals (λ = 450nm), thus this platform can be further improved for real experimental use.
Figure 3. Different concentrations of streptavidin-HRP with TMB for colorimetric detection using the miniaturized ELISA platform.
This project is the first one for me to implement simple skills that I have learned during the first three years in university on real bio-detection research issues, which motivated me to start thinking of practical methods to use engineering techniques for solving problems in an interdisciplinary way.